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On bubbles with small immobile adsorbed films rising 
in liquids at low Reynolds numbers 

By J. F. HARPER 
Mathematics Department, Victoria University of Wellington, New Zealand 

(Received 4 November 1972) 

Surface-active impurities may collect as a stationary film on the lowest part of 
a bubble rising in liquid while the remainder of the surface moves freely. 
Numerical approximations for the motion are available if the Reynolds number is 
low, but they fail for small films. We give the steady-state asymptotic solution 
for that case, and obtain the perturbation of the drag coefficient from its value for 
a completely free surface. It depends on the amount by which the surface tension 
is reduced at  the rear stagnation point. This reduction has usually been taken to 
be the maximum possible for the particular impurity; we consider also the case 
where dilution is so great that that maximum cannot be reached because the 
impurity would then be diffusing off the surface at the rear faster than onto it 
elsewhere. 

1. Introduction 
When a bubble rises through a liquid containing surface-active impurities, the 

fluid motion near to its surface is slowed down or stopped. In  suitable circum- 
stances, a motionless film is adsorbed onto the rear part of the surface, while the 
remainder of the surface is practically free to move and has very little material 
adsorbed on it. Savic (1953) first observed the phenomenon. It has since been 
confirmed experimentally by many workers; see Huang & Kintner (1969). Savic 
also began its theoretical study, for the case of spherical drops moving at Reynolds 
numbers much smaller than unity, with negligibly small interior viscosity and 
bearing rigid spherical caps. His approximate numerical solution has been 
improved by Davis & Acrivos (1966)) but even they reported numerical diffi- 
culties for small caps. 

It is the purpose of this paper to supplement their theory by giving an analytic 
solution valid asymptotically for small rigid caps, the rest of the bubble being 
assumed tangentially stress-free, the shape spherical, and the Reynolds number 
small. These assumptions are also those of Savic and Davis & Acrivos; the only 
theory yet available for large Reynolds numbers is an order-of-magnitude 
analysis by Levich (1962, pp. 447-8). 

The fluid motion is determined in $ 2 ,  in terms of the cap angle, which is 
proportional to the surface pressure at  the rear stagnation point. This is very 
nearly the difference in surface tension between the front and rear stagnation 
points; it may be limited only by the chemical nature of the liquid and its 
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surfactant, as was assumed by Davis & Acrivos, but there is another possibility, 
discussed in 9 3. I n  a steady state the mass flux onto the free part of the surface 
will be equal to the mass flux off the rigid part, and in very dilute solutions of 
surfactants the maximum surface pressure allowable by this condition is less 
than the ‘chemical’ limit. The consistency of our assumptions is checked in $4. 
It appears that either mechanism for limiting the surface pressure may arise in 
experiments. 

2. Theory of the fluid motion 
Consider a bubble rising steadily a t  speed U in an unbounded liquid of density p 

and dynamic viscosity 7 = up. The surface tension  will vary around the surface, 
but if it is high enough everywhere the bubble will be very nearly a sphere, of 
radius u. The surface pressure I1 is defined to be gp - v, where ap is the surface 
tension of pure liquid. We assume, with Savic (1953) and Davis & Acrivos (1966), 
that IT = 0 on the leading part of the surface 0 6 6 < rr - $*, that II takes what- 
ever values are necessary to stop surface movement on rr - $* < 6 < n-, and that 
surface viscosity and elasticity may be ignored. Here 0 is the polar angle of 
a spherical co-ordinate system centred on the bubble, and $* is the angular extent 
of the stagnant cap from the rear stagnation point. We assume also that the 
Reynolds number R = 2Ua/v < 1 and $* < 1. We write 

11 = H*($*)f (m),  (2 .1 )  

where m = (n- - 6)/$* andf(0) = 1, so that IT* is the surface pressure a t  the rear 
stagnation point, and f (m)  = 0 for m > I. I n  the region m 6 1 we may put 
cos 0 = p = - 1 + 1m2$*2, 2 to a first approximation. To find the function f (m),  we 
observe that the rigid part of the bubble surface is almost plane if $* < 1, and 
far from it the fluid motion is very nearly the Rybczynski-Hadamard flow past 
a bubble whose surface is entirely free of surfactant. Also m = mf/$*u is very 
nearly a dimensionless cylindrical polar radial co-ordinate in the stagnation 
region, m’ being the corresponding physical co-ordinate. Let us take s and s’ to 
be the dimensionless and physical axial co-ordinates, where s = s’/$*u > 0 
outside the bubble. 

Then the boundary conditions on the stream function $ are that 

$ - +Ua2$*3m2s a t  m2s $ 1; 

qk = Oontheaxis (m = 0, s >, 0);  $ = a$/as = Oonthestagnant cap(0 < m < 1, 
s = 0); and $ = a2$/as2 = 0 on the free surface (m > 1, s = 0) .  The differential 
equation for $ in creeping flow is, of course, 

(a2/am2 - m-1 a/am + a2/as2}2 $ = o 
in the region m 2 0 ,  s 2 0. 

a solution of the form 
This boundary-value problem is easily solved by observing that there must be 

4 = gUa2$*3m2s{l - CA,Qg)(h)  Pg)(t)} (2.2) 
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(see Payne & Pel1 1960), where T and t are oblate spheroidal co-ordinates given by 
s = T t ,  and m2 = ( T ~  + 1) (1 - t 2 ) ,  and Qp) and Pp) are first derivatives of Legendre 
functions. One finds that A ,  = 0 unless n = 1, and hence 

$ = n-lUa2q5*3rn?s{tan-1~ + T / ( T ~ +  l)]. (2-3) 
This solution resembles that of Reissner & Sagoci (1944) for the displacement 

of an elastic half-space when a circular portion of its surface is rotated through 
a fixed angle; the singularities at the circumference of the circle are of square-root 
type in both problems, as we now see. The surface velocity given by 

- urn = (l/a2$*2m) a$/& 
on the free surface (m > 1, s = 0; i.e. t = 0) is 

urn = n-lUq5*m(sec-lrn + (m2- l)&/m2); (2.4) 

for m-t  1 + this is asymptotically 2U$*(m2- l)*/n, so that ZL, comes sharply 
down to zero a t  m = 1. For large m, urn tends to +U$*m, which is the 
Rybczynski-Hadamard surface velocity. 

There is also a square-root singularity of the rate of shear E; on the stagnant 
cap (m < 1, s = 0; i.e. r = 0 )  we find that 

E = 4Um/na(l-m2)* = -(l/qa$*)aII/arn = -(II*/qa$*)dfldm; (2.5) 

the latter two expressions for E come respectively from our assumption that the 
viscous shear stress qE is balanced by a surface tension gradient and from (2.1). 
Becausef(0) = 1, it follows that 

f(m) = (I -m2)+ (2.6) 

and n* = 4Uq$*/n. (2.7) 

The simplest way to find the drag coefficient C,, given by 

C, = (drag force)/+pU2na2 = 8ga/3U2, 

where g is the acceleration due to gravity, is to use Harper’s (1972) equation 
(4.52), and so 

Equation (2.7) is very close to the corresponding result of Davis & Acrivos (1966) 
for values of II*/Uq up to about one, but (2.8) gives rather different effects of the 
surfactant on the drag. For rI*/Uy < 1, the present theory gives lower values of 
RCD and should be more accurate than that of Davis & Acrivos; the theories 
agree near II */ Uy = 1 ; and Davis & Acrivos give smaller and better drag values 
if IT*/Uq > I, or q5* > 45”. Our method fails, of course, for $* as large as this, 
while Davis & Acrivos reported numerical troubles for small cap angles. 

3. Determination of 11* 
So far, II* is a free parameter in the theory. Davis & Acrivos fixed it by putting 

it equal to the maximum possible surface pressure the given surfactant could 
provide, II,,, say. (For many surfactants, II is known to be approximately 
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proportional to the concentration in the solution up to a limiting value, and more 
concentrated solutions have nearly constant surface pressures; see, for example, 
Shaw (1970, p. 71).) To assume IT* = IImax is reasonable if the solution is suffi- 
ciently concentrated, but it seems worthwhile also to consider the possibility for 
small $* that I3 * is limited to a value lower than nmax by the available supply of 
surfactant. If the equilibrium surface pressure of the solution far from the bubble 
is JI,, it is clear that IT < IIm over almost the entire free part of the surface when 
the surface activity is high enough (see Harper 1972, p. 115); and surfactant will 
diffuse towards that part of the surface. I n  a steady state, when the total quantity 
of adsorbed material is constant, II must be greater than over some part of 
the surface, and in fact II ITm over almost the whole of the rigid part. (Mass 
transfer is less effective a t  a rigid than a free surface a t  high PBclet numbers, and 
our rigid surface is of small area.) 

If, then, II < II,,, everywhere, and II* is limited by the possible rate of 
convective diffusion to the surface, let us suppose that the surfactant solution is 
‘ideal’ (by analogy with ideal gases), i.e. that IT = R,TF = R,Thc, where R, is 
the gas constant, I? the surface excess of adsorbed surfactant (in moles per unit 
area), c the concentration of surfactant in the adjacent solution (in moles per 
unit volume), and h is a constant with the dimensions of length, the ‘adsorption 
depth’. (A cylinder of the solution of depth h would have equal amounts of 
surfactant dissolved within it and adsorbed on the surface, in equilibrium.) We 
also suppose that the diffusivity D is constant in the solution, that c = 0 in the 
gas in the bubble, and that chemical equilibrium is maintained a t  the surface, so 
that IT = R,Thc a t  each point, although gradients of II and c exist and cause 
diffusion. To simplify subsequent calculations, we define II by that equation 
throughout the liquid - n is a constant multiple of c - and work in terms of n. 

I n  a steady state, the total net diffusion flux to the surface vanishes, and so 

with our assumptions, where the subscript s indicates the bubble surface. To 
evaluate (an/&),, we assume a high PBclet number and so a thin diffusion 
boundary layer; the contrary hypothesis does not lead to  stagnant caps (Harper 
1972, p. 110). 

On the free part of the surface, where II < IIm and u = 4 U sin 19 except in 
a neighbourhood of the rear end which is too small to matter, we may use Levich’s 
(1962, p. 407) analysis to write 

aII/& = (3U/2;rrDa)~~IIm(1 +p)  ( 2 + , ~ - 8 ,  

and so the contribution to  the integral in ( 3 .  1) from this part of the surface is 

On the rigid part, we find the distribution of (aII/ar), by the method of Lighthill 
(1950), modified slightly as required for an axially symmetric flow. Because the 
rate of shear a t  the surface is known from equation (2.5) we may take ~ to be of 
the form $r = i-Em’2s’2 = (324UD2$*5a4/n)* Y2, (3 .3 )  
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in the diffusion layer, and so obtain the convective diffusion equation in the 
form 

where X depends only on m, being given for our distribution of E by 

X =  (3.5) 

so that, as m varies from 1 to 0, X varies from 0 to +B(#, $) = 0.479. Equation 
(2.6) gives us the surface boundary condition in the form 

n = II*(i-m2)t = I I*F(X) ,  say, (3.6) 

on Y = 0, and the other boundary conditions are ll -+ II, < n* as Y -+a, and 
II < II* on X = 0. 

Lighthill (1950) showed how to  solve (3.4) with these conditions; on neglecting 
n, completely we obtain 

n = I I * j o x q ) h ( Y / { x - t } ~ ) d t )  (3.7) 

and then from (3.1) and (3.2) that 

therefore 
$* = 1 . 7 6 l ( n , / U r ) ~ ( U ~ / D ) ~ ,  (3.9) 

II"/II, = 2*242( Uy/II,)i( U a / D ) A  = 2.431( Ua/D)*$*-%. (3.10) 

Because (Ua/D)Q > 1 and $* < 1, the second part of (3.10) reveals that our 
assumption II* 9 II, was self-consistent. One would only increase 11* by 
including the effects of nW in the calculation, and so the assumption was valid: 
to  discard it would introduce complication without significantly improving 
accuracy. The first part of (3.10) shows that II*/II, increases with bubble size in 
a given liquid (constant 7 ,  D, HW), because if RC, remains close to 16, U K a2 
approximately, and so n*/n, cc a%. Because it is required that II* < HI,,, for 
diffusion to limit the surface pressure, we see that this mechanism operates only 
in sufficiently dilute solutions. On the other hand, the solution must be concen- 
trated enough to stop the motion over a part of the surface. 

4. Conditions for validity 

must be satisfied. We collect them below. 
If a bubble is to rise as predicted by the present theory, a number of conditions 

(i) For the creeping-flow equations to be used, R = 2Ua/v < 1. 
(ii) For the bubble to be nearly spherical, a /Uy 

a is, of course, lowest a t  the rear stagnation point. 
1 according to Savic (1953); 
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(iii) For IT at  the front stagnation point to be much less than lTm, the PBclet 
number P = 2 Ua/D > 1 and also the appetite of the surface there for surfactant 
must be too great for the diffusion through the bulk solution to satisfy, so that 

h/a 9 P-4, (4.1) 

according to Harper (1972, equations 4.46 and 4.48). Values of the adsorption 
depth h vary from molecular sizes for weakly surface-active solutes, to 0-3 mm 
for dodecanol (CI2H,,OH) in water, and even more for highly surface-active 
nearly insoluble substances. 

(iv) For the thickness S of the diffusion boundary layer on the stagnant cap 
to be much less than its radius, 

6 N a#*+~-+ < a$*, SO #* 9 P-4. (4.2) 

(v) For the stagnant cap to be small, $* < 1. 
(vi) For Lighthill's diffusion theory to  hold, u, 4 E6 on the stagnant cap. 
To estimate u,, we write the equation for the material balance a t  the surface 

in the form 
a 
ae a- (JIu,sin@) = (4.3) 

(see Harper 1972, equation 4.42), where D, is the surface diffusion coefficient. 
As II is already known, we find that u, 4 ES requires both that 

#*bPfD/D, $ 1, (4.4) 
and that #*AP*h/aB 1. (4.5) 

Condition (4.4) will always hold, because of (4.2)) if D and D, are of the same order. 
Condition (4.5) requires a sufficiently large value of h, and is more restrictive 
than (4.1). The analysisleading to (4.4) and (4.5) fails near the transition from free 
to effectively stagnant surfaces, but the above conditions will ensure suitably 
small values of u, over most of the cap, and so the transition zone will be narrow 
enough to ignore. 

5. Conclusions 
The stagnant-cap model for the flow is often a good one; its principal require- 

ments are a highly surface-active solute and a high P6clet number. But previous 
calculations of the viscous drag are somewhat misleading for small cap angles, 
and they cover only the case lT* = ITmax, i.e. a solution concentrated enough for 
the surface pressure to reach its upper bound for a given surfactant. Calculations 
for the simplest alternative case, IT* low enough for the solution to be everywhere 
ideal, give markedly different results. We find that RC, - 1 6 ~  an when C, is 
close to 16/& where n = - 6 if Il* = II,,, and n = --% if the solution is ideal. 
(Compare the values n = - 2 for strong and n = -+ for weak surfactants in 
solutions so dilute that u, is close to 4 U sin 6 even near the rear stagnation point, 
due respectively to Harper (1973) and Levich (1962).) 
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